
ON-LINE RANGE PREDICTION SYSTEM (II)

September 1988

ON-LINE RANGE PREDICTION

(II)

SYSTEM*

* Research supported by NASA-Ames Dryden under Grant NAG 2-303,

"Survey and Analysis of X-Band Radar for Flight Research in the

Western Aeronautical Test Range", Principal Investigator: Nhan

Levan, Research Assistant: Tayfun Cataltepe, Department of

Electrical Engineering, 7732 Boelter Hall, UCLA.

W_

SEPTEMBER 1988

v

Table of contents

L,
v

=.

Ii

II.

III.

IV.

V.

VI.

VII.

VIII.

INTRODUCTION 1

TEST RESULTS 1

PROGRAM TERMINATION 2

TIME LAG BETWEEN INPUT AND OUTPUT 3

CONTINUOUS PROPAGATION _ 4

CONCLUSION 6

REFERENCES 7

FIGURES .. 8

Fig. I:

Fig. 2:

Fig. 3:

Fig. 4:

IX.APPENDIX:

Input data configuration 9

Input-output time lag I0

Continuous propagation I0

System block diagram Ii

PROGRAM LISTINGS 12

L_w

I. INTRODUCTION:

This report is a follow-up to the interim technical

report of July 1987 regarding the on-line range prediction

system for the laser ranger at Crows Landing [i]. The on-line

range prediction system is designed for providing a

prediction of the target range in the case of a laser data

dropout. It consists of real time implementation of a Kalman

filter on an IBM PC/AT equipped with necessary hardware. The

system was set up and tested at Crows Landing in the Fall of

1987.

This is a report of the improvements made on the on-line

range prediction system during 1988. It is organized as

follows. We begin by discussing and proposing solutions to

the several problems encountered during system tests. Then,

we explain the improvements made on the filter sotware,

namely, accounting for the time lag and providing data

continuously. Finally, we mention the ideas that can be

considered in the future.

II. TEST RESULTS:

During the initial tests at Crows Landing, althoung the

range output was stable, a jittering in the velocity output

of the filter was observed. This problem was resolved during

further tests performed at UCLA in Spring 1988 using an

identical computer system and additional circuitry provided

by Fred Shigemoto. The circuitry consisted of a 21 bit serial

data generator simulating the incoming laser range data, and

a serial to parallel converter that is also used in the

original system at Crows Landing. Range and range velocity

_bF

outputs of the system were displayed on a simple digital

display circuit.

It was found that the jittering problem was caused by the

"data ready" signal which was a square wave with period T,

the sampling period of the filter. Thus, the "on" time of the

ready pulse was also T seconds.But the sampling period is

(and must be) longer than the time it takes to process a

singledata sample (2 milliseconds). Hence, when the system

started checking for the ready pulse immediately after

outputting the previously processed sample, it found a"high"

signal even though no new sample had arrived. Consequently,

the synchronization of the system with the arriving data

samples was lost and this has resulted in unusal velocity

estimates, or jittering.

For best performance, then, the ready signal should be a

pulse having a width greater than 4 microseconds but less

then the 2 milliseconds program execution time. Only in this

case, each "data ready" pulse will correspond to a new

incQming data sample and the synchronization of the system

will be maintained.

III. PROGRAM TERMINATION"

V_

The second problem is the termination of the program. At

present, once it starts running it is not possible to stop

the Kalman filter program using the keyboard commands except

by system reset. Automatic stopping of the program occurs

only when the range input is greater than 50 miles.

The assembly language routines and the main program are

updated in a way that will enable normal termination of the

execution upon request. The method is that an externally

supplied termination request signal is recognized by the

software and the program stops running. Bit 21, which is one

of the unused bits of the 32 bit input data is employed for

this purpose (see Fig.l).
A minimal external hardware consisting of a toggle switch

between 0 and 5 volts is required. Bit 21 is already

connected to bit 5 of port 2 on the input board (pin 43 on
the input board connector). A high value set manually on this

bit via the switch causes the input subroutine to return a

special number to the main program which detects it,

resulting in the program termination. The number sent is 221

(counts), which corresponds to a range greater than 50 miles
and since the filter software is already set to stop whenever

the input range data is greater than 50 miles, this causes
normal termination of the program.

Since the input subroutine is periodically called by the

main program, a stop request is recognized by the upcoming

subroutine call, hence it is always possible to stop the

program. When program termination is requested through the

switch, the data at the input port is ignored.

IV. TIME LAG BETWEEN INPUT AND OUTPUT:

=

There are two major improvements which have been made on

the existing Kalman filter. The first one regards the output

and its corresponding input. Since it takes a finite amount

of time to process a sample (around 2 milliseconds), the

range output corresponds to the input sample that has arrived

2 milliseconds earlier that the output instant (see Fig.2).

One way of accounting for this time lag is by propagating

the range estimate using the velocity estimate. That is, at

the instant nT+_, _n+_ is sent out to the port instead of _n

,where

V

A

Rn+A = Rn + _n 2% ,

and _ is the amount of time lag, which is around 2

milliseconds execution time plus the time it takes to do the

above calculation. R n and V n are the estimates of range and

velocity, respectively, calculated by the Kalman filter using

the input data that has arrived at the instant nT. The main

program has been updated to do the propagation described. A

listing can be found in the appendix.

V

v

w,J

V, CONTINUOUS PROPAGATION:

In its present form, after outputting the range and

velocity estimates, the Kalman filter program waits for the

next input sample. During this time period between the output

and the arrival of the next sample, the system is idle in the

sense that no data processing is performed. But, at the same

time, the computer is not free to do any other task unless

this task is integrated in the filter software.

This time period can be filled with range data updated by

way of propagation. Currently, a multiplier and adder circuit

is being designed at Moffett to perform this task. But, the

propagation can be done in software rather than in hardware.

The main program outputs the range and velocity estimates R n

(or _n+a as explained above) and _n by passing them to an

assembly language subroutine which configures a 32 bit data

out of them and sends it to the output port. After this

operation, the range R n can be propagated using V n within th@

assembly language subroutine, and then it can be sent to the

port again As in the previous case,

Rn+ 7 = R n + V n

%w

z =
V

v

where _ is the time it takes to do the above calculation. This

operation is repeated untill the next sample (or the data

ready pulse) arrives as follows:

+k_ = Rn+(k-1)_ + Vn _ ,

where k is the repetition count (see Fig.3). Note that the

A

velocity is assumed to be constant at V n during this period

of repeated propagation.

Statistically, the propagated range is the best possible

estimate at that instant. Since the most recent observation

(range input) is already utilized to obtain the Kalman filter

A

estimates R n and V n, and there is no new information

available, the only way to estimate the range at any

subsequent instant is by way of propagation [2].

The purpose of propagation is only to provide range data

untill the next measurement arrives, and it does not affect

the operation of the Kalman filter. When the new sample

arrives, the filter uses the sample to update the estimate

_n, not the propagated value. Also, since a linear time

invariant model is assumed, the sampling interval T has to

stay constant. If a sample arrives earlier than T seconds,

the Kalman filter recognizes it as the next input and

proceeds with the estimation, but this estimate is wrong

since the calculations are based on constant sampling

interval assumption.

The assembly language routines for handling input and

output have been revised to do the tasks described above. In

order to avoid too many subroutine calls and minimize the

execution time, both of them are combined in a single

assembly language subroutine.A listing is included in the

appendix. The subroutine parameters are the output data to

be configured, the range and velocity estimates, and the

v

v

V

input data. The range and velocity estimates are passed onto

the I/O subroutine in both real and 32 bit integer formats.

Integer versions are used for configuring the output data.

Real numbers are used in the propagation calculations. The

IBM PC/AT is equipped with a 80287 math co-processor which is

capable of handling high accuracy real number arithmetic with

simple instructions in the assembly language level.

VI. CONCLUSION:

In this report, we proposed solutions to the problems

encountered during the initial system tests, namely,

jittering in the velocity output and the program termination.

Also, we explained several ideas for improving the system

performance. These are regarding the input-output time lag

and more effective utilization of the system by providing

more range estimates between the input samples.

As a result of these changes, the software had to be

revised and a minimal external hardware had to be added. As

before, either on-site tests or tests at at UCLA with the

test circuitry are necessary to verify t_he functionality of

the system.

In the future, more improvements can be made on the

system. Incorporating an atmospheric refraction correction

scheme has been on the agenda from the beginning. Once the

proposed changes in this report are tested, a suitable

refraction correction algorithm may be integrated into the

Kalman filtering software. Also, since it is essentially a

programmable real time data processing system, other

applications of the system are possible.

V

V

VII. REFERENCES:

i. "On-line Range Prediction System", Interim Technical

report for Survey and Analysis of X-Band Radar for Flight

Research in the Western Aeronautical Test Range, NASA Ames

Grant NAG 2-303, Principal Investigator:. Nhan Levan, July

1987.

2. Balakrishnan, A. V., Kalman Filtering Theory, Optimization

Sotware, Inc., Publications Division, New York, 1984.

V

W

- rv

kJ

V

VIII. FIGURES:

V

v

v

V

v

v

V

v

Q
p.-

0,.

p-

o,.m

#-

O'3

p.-

m

C:,

mmmm

m

mmmmm

m_

mm

mmmm

k_

m

m

r_r_

m

cl co
IN

m
0

mmm

m

m

m

m

mm

mmm

m

CO

m

m

O
O.J
m

m

OJ
m

o

¢...j
m

mm

u

mmmm

mm

m

"o

----,-{I_D o

i.

0
-,-I

14

-,,4

0

I-4

-,-I

lO

V

v

" lqIN Rn Rn

(n-1)T (n-1)T+A nT nT+A

A=2ms

,-., T _}4l T "_'
l_ I v" I

V

DATA I-I 13 IL

Fig. 2: Input -output time lag

N Rn ""Rn _1
_ .-, Propagation _

O_r ¢ v°. ^ . # o_r

T ibLI
|-,_, v !

Fig. 3: Continuous propagation

_2

11

v

V

,<

'v"
..J

i °

LLI .
QZ

=o

o

LU

LL]

m

co

m

..Q

0,.

"0

0
0

,-I

E

ag

12

v

IX. APPENDIX: PROGRAM LISTINGS

13

%,J

rangepr2.for

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

VERSION II

THIS IS A TWO STATE KALMAN FILTER FOR LASER RANGE PREDICTION.

BY TAKING ADVANTAGE OF THE SYSTEM DYNAMICS, MATRIX CALCULATIONS

ARE ELIMINATED TO MINIMIZE EXECUTION TIME. SOME CONSTANTS THAT

ARE USED IN THE PROGRAM ARE INITIALIZED AT THE BEGINNING IN ORDER

TO SAVE CALCULATION TIME IN THE MAIN LOOP. ASSEMBLY LANGUAGE

ROUTINES ARE USED FOR INPUT/OUTPUT FOR HIGH SPEED. SOME PARAMETERS

ARE ENTERED INTERACTIVELY BY THE USER.

DEFINITIONS OF SYMBOLS

T : SAMPLING INTERVAL

SCALE,OFFSET: PARAMETERS FOR CONVERTING COUNTS INTO FT

XPLSI, XPLS2: ELEMENTS OF STATE ESTIMATE VECTOR
XMNSI : ONE STEP PREDICTION FOR RANGE

V, IV : OBSERVED RANGE (FEET, COUNTS)

IV0 : OBSERVED RANGE AT THE PREVIOUS INSTANT (CNTS)

IXPLSI,

IXPLS2,KOUT : INTEGER VARIABLES USED FOR I/O ROUTINE CALLS

PII,PI2,P22 : ELEMENTS OF ERROR COVARIANCE MATRIX

HII,HI2,H22 : ELEMENTS OF PREDICTION ERROR COVARIANCE

FFII,

FFI2,FF22

GG

SIGMA

MINVAR

MAXVAR

Zl

Z2

: ELEMENTS OF STATE NOISE COVARIANCE

: OBSERVATION NOISE VARIANCE

: STRAIGHT LINE FLIGHT VARIANCE

: MINIMUM STATE NOISE VARIANCE

: MAXIMUM STATE NOISE VARIANCE

: MAXIMUM INNOVATION AT WHICH MINVAR IS USED

: MINIMUM INNOVATION AT WHICH MAXVAR IS USED

ASSEMBLY LANGUAGE SUBROUTINES

INOUT : READS THE 24 BIT DATA FROM THE INPUT PORT

WHEN THE DATA READY SIGNAL COMES. WHEN THE READY

SIGNAL IS NOT AVAILABLE, PROPAGATES THE RANGE

(SECOND ARGUMENT) USING THE VELOCITY (THIRD ARG.) .

PROPAGATION LOOP TIME IS PLACED IN THE LAST

ARGUMENT AND MUST NOT BE CHANGED.

SENDS THE PROPAGATION TO OUTPUT PORT. READY

SIGNAL IS CONNECTED TO BIT 24. THE INPUT DATA IS

PLACED IN THE RETURN ARGUMENT. THE ARGUMENT MUST BE

DECLARED AS 32 BIT INTEGER (SIXTH ARG). ALSO,

CONFIGURES A 32 BIT OUPUT DATA (FIRST ARGUMENT)

BY COMBINING THE 18 BITS OF THE FOURTH AND 12 BITS

(MSB=SIGN) OF THE THIRD ARGUMENT. SENDS THE

CONFIGURED ARGUMENT TO THE OUTPUT PORT. ALL INTEGER

ARGUMENTS MUST BE DECLARED AS 32 BIT INTEGERS.

THE SEVENTH ARGUMENT IS ONLY NEEDED IN THE ASSEMBLY

ROUTINE AND NOTHING MUST BE PASSED TO SUBROUTINE

IN THIS VARIABLE.

INDAT2 : READS THE FIRST TWO CONSEQUTIVE SAMPLES FOR

INITIALIZATION DURING START UP, IF REQUESTED.

**

v

14

C

C INITIALIZATIONS

INTEGER*4 IV, IV0,IXPLSI,IXPLS2,KOUT,_,IDUMMY

REAL MINVAR, MAXVAR,MINVARA, MAXVARA
TWOTAU=0.0002

1 PRINT*,'SCALE FACTOR = ?(FT/COUNT) '

READ *, SCALE

IF (SCALE.LE.0.0) GO TO 1

PRINT*, 'OFFSET = ?(FT) '

READ*,OFFSET

2 PRINT*, ' SAMPLING INTERVAL = ?(SEC) '

READ*, T

IF (T.LT.0.003) THEN

PRINT*,'SAMPLING INTERVAL MUST BE >_ 3 MILLISEC'

GO TO 2

ELSE

ENDIF

PRINT*,'DO YOU WANT TO INITIALIZE THE RANGE AND RANGE VELOCITY'

PRINT*,'OR USE THE FIRST TWO VALID SAMPLES FOR INITIALIZATION ?"

PRINT*,' '

3 PRINT*,'O _ USE THE FIRST TWO SAMPLES'

PRINT*,'1 = INITIALIZE MANUALLY

READ*,KTESTI

IF (KTESTI.LT.0.OR.KTESTI.GT.I) GO TO 3

IF (KTESTI.EQ.I) THEN

4 PRINT*,'INITIAL VALUE OF RANGE = ?(FT) '

READ*,XPLSI

IF (XPLSI.LE.0.0) GO TO 4

5 PRINT*,'INITIAL VALUE OF RANGE VELOCITY = ?(FT/SEC) '

READ*,XPLS2

IF (ABS(XPLS2).GT.1000.0) GO TO 5

IV=(XPLSI-OFFSET)/SCALE

IV0=-I
ELSE

ENDIF

PRINT*,' "

PRINT*,'THE PARAMETERS ARE "'

PRINT*,' '

PRINT 100,SCALE

I00 FORMAT (IX,'SCALE FACTOR = ',FII.3,' (FT/COUNT)')

PRINT 101,OFFSET

I01 FORMAT (IX,'OFFSET m ',FII.3,' (FT)')

PRINT 102,T

102 FORMAT (IX,'SAMPLING INTERVALm ',FII.3,' (SEC)')

GG=20.0

SIGMA=31.68

MINVAR=0.005*SIGMA

MAXVAR=2.0*MINVAR

ZI=0.01*SQRT(SIGMA)

Z2=I00.0*Zl

PII=I0.0

PI2=0.0

P22-I0.0

PRINT*,' '

PRINT*,' '

%J

15

kJ

_RINT*r ' ** '

PRINT*, ' '

PRINT*, ' '

PRINT*, ' '

PRINT*,'THE NOISE PARAMETERS ARE PRESET AS :'

PRINT*, ' '

PRINT I03, GG

103 FORMAT (IX, "OBSERVATION NOISE VARIANCE (GG) "_ ' ,

*FII .3)

PRINT 104,MINVAR

104 FORMAT (IX,'MINIMUM STATE NOISE VARIANCE (MINVAR) - ',

*FII .3)

PRINT 105, MAXVAR

105 FORMAT (IX, 'MAXIMUM STATE NOISE VARIANCE (MAXVAR) _ ',

*FII.3)

PRINT 106, ZI

106 FORMAT (IX,'MAXIMUM INNOVATION AT WHICH MINVAR IS USED (Zl) I" ",

*FII.3)

PRINT i07, Z2

107 FORMAT (IX,'MINIMUM INNOVATION AT WHICH MAXVAR IS USED (Z2) " ',

*FII . 3)

PRINT 108,PII,PI2

I08 FORMAT (IX, 'INITIAL VALUE OF ERROR COVARIANCE MATRIX (P) " ',

*Fg. 3,2X, F9.3)

PRINT i09, PI2, P22

109 FORMAT (IX,' ',

*F9 . 3,2X, F9 .3)

PRINT*, ' '

PRINT*,'DO YOU WANT TO CHANGE THE NOISE PARAMETERS ? '

6 PRINT*,'0 = NO, 1 = YES '

READ*, KTEST

IF (KTEST.LT.0.OR.KTEST.GT.I) GO TO 6

IF (KTEST.EQ.0) GO TO 7

PRINT ii0

ii0 FORMAT(IX, '--ENTER ANY NEGATIVE VALUE TO LEAVE A PARAMETER',

* ' UNCHANGED--')

PRINT*, ' '

PRINT*,'OBSERVATION NOISE VARIANCE (GG) = ? '

READ *, GGA

IF (GGA.LT.0.0) GO TO 9

GG=GGA

9 PRINT*,'MINIMUM STATE NOISE VARIANCE (MINVAR) " ? '

READ*, MINVARA

IF (MINVARA.LT.0.0) GO TO i0

MINVAR=MINVARA

i0 PRINT*, 'MAXIMUM STATE NOISE VARIANCE (MAXVAR) = ? '

READ*, MAXVARA

IF (MAXVARA.LT.0.0) GO TO Ii

MAXVAR=MAXVARA

Ii IF (MAXVAR.LE.MINVAR) THEN

PRINT*, 'MINVAR MUST BE < MAXVAR, ENTER MINVAR AND MAXVAR AGAIN _

PRINT*, ' '

GO TO 9

ELSE

ENDIF

16

v

%.2

12

13

14

15

16

17

PRINT*, 'MAXIMUM INNOVATION AT WHICH MINVAR IS USED (ZI) " ? '

READ*, ZIA

IF (ZIA.LT.0.0) GO TO 12

ZI=ZIA

PRINT*, 'MINIMUM INNOVATION AT WHICH MAXVAR IS USED (Z2) _ ? "

READ*, Z2A

IF (Z2A.LT.0.0) GO TO 13

Z2=Z2A

IF (Z2.LE.ZI) THEN

PRINT*,'Z2 MUST BE > ZI, ENTER Z1 AND Z2 AGAIN'

PRINT*, " '

GO TO ii

ELSE

END IF

PRINT*, ' INITIAL VALUE OF ERROR COVARIANCE MATRIX :'

PRINT*, 'P (I, I)= _

READ*, PIIA

IF (PIIA.LT.0.0) GO TO 14

PII=PIIA

PRINT*, 'P (i, 2) = ?

READ*, PI2A

IF (PI2A.LT.0.0) GO TO 15

PI2=PI2A

PRINT*, 'P (2,2)= ?

READ*, P22A

IF (P22A.LT.0.0) GO TO 16

P22=P22A

IF ((PII*P22-PI2**2) .LE.0.0) THEN

PRINT*, "ERROR COVARIANCE NOT POSITIVE DEFINITE, ENTER P AGAIN'

PRINT*,' '
GO TO 13

ELSE

ENDIF

TSQ=T**2

TSQ2=TSQ/2.0

TCUB=T**3/3.0

TWOT=T*2.0

Q0=MINVAR/TCUB

QI=MAXVAR/TCUB

SLOPE=(QI-Q0)/(Z2-ZI)

ZINT=Q0-ZI*SLOPE

IF (KTESTI.EQol) GO TO 30

CALL INDAT2(IV0)

IF (IV0.LT.0) GO TO 17

CALL INDAT2 (IV)

IF (IV.LT.0) GO TO 17

IF (ABS(IV-IV0) .GT.20) GO TO 17

XPLSI=IV*SCALE+OFFSET

XP_S2=(IV-IV0)*SCALE/T

IV0=IV

GO TO 3O

17

C MAIN LOOP STARTS

C

C UPDATE STATE NOISE COVARIANCE (VARY LINEARLY WITH THE INNOVATION Z)

50 Z=ABS (XMNS I-V)

IF (Z.GE.Z2) GO TO 20

IF (Z.LE.ZI) GO TO 30

QR=Z*SLOPE+ZINT

GO TO 40

20 QR=QI

GO TO 40

30 QR=Q0

40 FFII=QR*TCUB

FFI2=QR*TSQ2

FF22=QR*T

C

C CALCULATE PREDICTION ERROR COVARIANCE

HII=PII+TWOT*PI2+P22*TSQ+FFII

HI2=PI2+T*P22+FFI2

H22=P22+FF22

C

C STATE PROPAGATION (PREDICTION)

XMNSI=XPLSI+T*XPLS2

E=HII+GG

DI=GG/E

D3=-HI2/E

C

C CONVERT COUNTS INTO FEET, CHECK FOR RUN/STOP,

C CHECK FOR DATA VALID/INVALID, CHECK ONE STEP DIFFERENCE

V=IV*SCALE+OFFSET

IF (V.GT.260000.0) GO TO 99

IF (IV.LT.0) GO TO 55

IF (IV0.GE.0.AND.ABS(IV-IV0).GT.20) GO TO 55
C

C

C

55

STATE UPDATE (ESTIMATE)

XPLS I=DI *XMNS 1+HI 1 *V/E

XPLS2=D3* (XMNSI-V) +XPLS2

CALCULATE ERROR COVARIANCE

PII=DI*HII

PI2=DI*HI2

P22=D3*HI2+H22

GO TO 56

IF OBSERVATION INVALID, USE ONE STEP PREDICTION
XPLSI=XMNSI

PII=HII

PI2=HI2

P22=H22

C

C SEND THE RANGE AND VELOCITY ESTIMATES TO THE OUTPUT PORT

C READ THE NEW SAMPLE IF DATA IS READY

C IF NOT READY, PROPAGATE THE RANGE ESTIMATE USING VELOCITY EST.

C TAU IS THE TIME IT TAKES TO PROPAGATE (MULT. BY 2 SINCE VEL IS

C DIVIDED BY 2)

56 IV0=IV

PLSI=(XPLSI+XPLS2*.OO2-OFFSET)/SCALE

IXPLSI=PLSI

PLS2=XPLS2/(2.0*SCALE)

IXPLS2=PLS2

CALL INOUT(KOUT,PLSI,PLS2,IXPLSI,IXPLS2,IV, IDUMMY, TWOTAU)

C

C GO BACK FOR THE NEXT DATA

GO TO 50

99 STOP

END

.J2

18

= :
v

inout.asm

FRAMES

DOUT

RRANGE

RVEL

RANGE

VEL

KV

Y

TOTAU

FRAMES

STACK

PAGE ,132

TITLE FORTRAN SUBROUTINE

.8087

STRUC

DD 9

DD

DD

DD

DD 9

DD

DD

DD

ENDS

SEGMENT WORD STACK 'STACK'

DB 64 DUP('MYSTACK')

STACK ENDS

MYPRO SEGMENT 'CODE'

ASSUME CS:MYPRO, SS:STACK

INOUT PROC FAR

PUBLIC INOUT

;DATA TO BE SENT TO THE PORT

;LOCATION OF RANGE (SHORT REAL)

;LOCATION OF VELOCITY (SHORT REAL)

;RANGE (32 BIT INTEGER)

;VELOCITY (32 BIT INTEGER)

;INPUT DATA

;VELOCITY IN SIGN/MAG. 16 BIT INT. FORM

;2*PROPAGATION LOOP TIME

NOT AX

ADD AX, 1

OR AX, 8000H

LDS SI, ES:Y[BX]

MOV [SI] ,AX

JMP MANIP

CONFIG: MOV AL, [SI]

LDS SI,ES:Y[BX]

MOV [SI] ,AL

LDS SI, ES :VEL [BX]

MOV AL, [SI]+I

AND AL, 7FH

LDS SI,ES:Y[BX]

MOV [SI]+I,AL

;ADDRESS OF SECOND VELOCITY LOCATION

;STORE IN FIRST TWO BYTES OF VEL

;FOR +VE VEL, PUT SIGN IN BIT 15

;IN THE SECOND VELOCITY LOCATION

PUSH AX ;SAVE THE REGISTERS

PUSH BX

PUSH CX

PUSH DX

PUSH SP

; CONFIGURE INPUT AND OUTPUT PORTS

MOV DX,230H ;CONTROL REG OF OUTPUT PORT

MOV AL,0FH

OUT DX, AL ;CONFIGURE OUTPUT PORTS

MOV DX,228H ;CONTROL REG OF INPUT PORT

SUB AX, AX
!

OUT DX,AL ;CONFIGURE INPUT PORTS

; STORE VELOCITY IN SIGN MAGNITUDE FORM FOR LATER USE

LDS SI,ES:VEL[BX] ;LOAD ADDRESS OF VELOCITY

MOV AL, [SI]+3 ;GET SIGNED BYTE OF VEL

CMP AL,00H

JNS CONFIG ;IF VEL +VE, GO ON WITH DATA CONFIGURATION

MOV AX, [SI] ;ELSE, CONVERT TO SIGN (BIT 15)-MAG (0-14)

-_ 19

= :
v

V

V

v

v

; CONFIGURE THE 32 BIT OUTPUT (DOUT)

MANIP : LDS SI, ES :RANGE [BX]

MOV AX, [SI]

LDS SI, ES :DOUT [BX]

MOV [S I], AX

LDS SI, ES :RANGE [BX]

MOV AL, [SI]+2

MOV CL, 2

ROR AL, CL

LDS SI,ES :Y[BX]

MOV AH, [SI]

ROL AX, CL

LDS SI, ES :DOUT [BX]

MOV [SI]+2,AH

LDS SI,ES:Y[BX]

MOV AX, [SI]

MOV CL, 3

SAR AX, CL

MOV CL, 4

SAR AH, CL

MOV CL, 3

SAR AX, CL

AND AL, 3FH

LDS SI, ES :DOUT [BX]

;LOAD ADDRESS OF RANGE

;GET THE FIRST TWO BYTES OF RANGE

;LOAD ADDRESS OF DATA TO BE SENT OUT

;STORE THE FIRST TWO BYTES OF RANGE IN DOUT

;RANGE ADDRESS AGAIN

;GET THE THIRD BYTE OF RANGE

;ROTATION COUNT

;LOAD THE ADDRESS OF VELOCITY

;GET THE FIRST BYTE OF VELOCITY

;PUT THE CONFIGURED BYTE IN AH

;ADDRESS OF DOUT

;STORE THE THIRD BYTE TO GO OUT

;ADDRESS OF VELOCITY

;GET VELOCITY IN AX

;CONFIGURE FOURTH BYTE

MOV [SI]+3,AL ;STORE THE FOURTH BYTE TO GO OUT

; SEND THE DATA TO THE OUTPUT PORTS

;POINT TO PORT 0

;GET THE FIRST BYTE IN AL

;OUT FIRST BYTE TO PORT 0

;POINT TO PORT 1

;GET THE SECOND BYTE IN AL

;OUT SECOND BYTE TO PORT 1

;THIRD BYTE IN AL
J

;POINT TO PORT 2

;OUT THIRD BYTE TO PORT 2

;POINT TO PORT 3

;LAST BYTE IN AL

;LAST BYTE TO PORT 3

MOV DX,231H

MOV AL,[SI]

OUT DX,AL

INC DX

MOV AL, [SI]+I

OUT DX, AL

MOV AL, [SI]+2

INC DX

OUT DX,AL

INC DX

MOV AL, [SI]+3

OUT DX, AL

; READ THE DATA READY PULSE

MOV DX,22CH

IN AL,DX

RCR AL, I

JC READY

;POINT TO INPUT PORT 3

;GET THE READY PULSE IN CARRY

;IF DATA READY, GO READ IT

; IF DATA NOT READY, PROPAGATE THE RANGE

FINIT ;INITIALIZE THE CO-PROCESSOR

;VELOCITY TO TOP OF STACK

;MULTIPLY BY TIME

;ADD TO THE RANGE

;STORE THE REAL VALUE

;POP AND STORE THE 16 BIT INTEGER VERSION

;CHECK DATA READY PULSE AGAIN

LDS SI, ES :RVEL [BX]

FLD DWORD PTR [SI]

LDS SI, ES :TOTAU [BX]

FMUL DWORD PTR [SI]

LDS SI, ES :RRANGE [BX]

FADD DWORD PTR [SI]

FST DWORD PTR [SI]

LDS SI, ES :RANGE [BX]

FISTP DWORD PTR [SI]

FWAIT

JMP MANIP

%,J 20

t J

V

V

; IF DATA READY, READ IT FROM THE INPUT PORTS

READY: LDS SI,ES:KV[BX] ;LOCATION OF THE INPUT

MOV DX,22BH ; POINT TO PORT 2

IN AL, DX

AND AL, 3FH

CMP AL, 20H

JNS TERM

AND AL, IFH

CMP AL, 10H

JS PRED

AND AL, 0FH

MOV [SI]+2,AL

DEC DX

IN AL, DX

MOV [SI]+I,AL

DEC DX

IN AL, DX

MOV [SI],AL

MOV AL, 00H

MOV [SI]+3,AL
JMP F IN

; INPUT DATA CONFIGURATION FOR INVALID SAMPLES

PRED : MOV AL, 0FFH

MOV [SI]+3,AL

JMP FIN

; INPUT DATA CONFIGURATION FOR STOP REQUESTS

TERM : SUB AX, AX

MOV [SI], AX

MOV AX, 0020H

MOV [SI]+2,AX

FIN: POP SP

POP DX

POP CX

POP BX

POP AX

RET

INOUT ENDP

MYP RO END S

END

;IS THERE A STOP REQUEST?

;IF STOP REQUESTED, SET UP FOR TERMINATION

;IS THE DATA VALID?

;IF NOT, GO TO PREDICTOR SET-UP

;IF VALID, MASK THE VALID/INVALID BIT

;READ THE REST OF THE INPUT

;RESTORE THE REGISTERS

v 21

%_

%_,

%,,

= ,v

V

V

r

inports2.asm

FRAME

NV

FRAME

STACK

STACK

MYPROG

INDAT

REDY:

PRD:

FINAL :

INDAT

MYPROG

PAGE , 132

TITLE FORTRAN SUBROUTINE

STRUC

DD ?

ENDS

SEGMENT WORD STACK 'STACK'

DB 64 DUP('MYSTACK')

END S

SEGMENT 'CODE'

ASSUME CS:MYPROG, SS:STACK

PROC FAR

PUBLIC INDAT

PUSH AX ;SAVE THE REGISTERS

PUSH BX

PUSH CX

PUSH DX

PUSH SP

MOV DX,228H ;POINT TO CONTROL REG

SUB AX, AX ;0 TO AX

OUT DX, AL ;CONFIGURE PORTS FOR INPUT

ADD DX,4H ;POINT TO PORT 3

IN AL,DX ;READ THE 'DATA READY BIT

RCR AL, I ;GET THE READY BIT IN CF FOR CHECKING

JNC RED't" ;IF DATA NOT READY, CHECK AGAIN

LDS SI,ES:_4V[BX] ;LOCATION OF THE RANGE

DEC DX ;POINT TO PORT 2

IN AL,D'X ;GET THE MSB OF THE DATA, BITS 16-23

AND AL, IFH ;MASK THE UNUSED BITS (23,22,21)

CMP AL,10H ;IS THE DATA VALID? (AL-10)

JS PRD ;IF NOT VALID, GO TO PREDICTOR SET UP

AND AL,0FH ;IF VALID, MASK THE VALID/INV,%LID BIT
MOV [SI]+2,AL ;STORE THE THIRD BYTE

;POINT TO PORT 1

;GET THE SECOND BYTE

;STORE THE SECOND BYTE

;POINT TO PORT 0

;GET THE FIRST BYTE

;STORE THE FIRST BYTE

DEC DX

IN AL, DX

MOV [SI]+I,AL

DEC DX

IN AL, DX

MOV [SI] ,AL

MOV AL, 00H

MOV [SI]+3,AL

JMP FINAL

MOV AL, 0FFH

MOV [SI]+3,AL
POP SP

POP DX

POP CX

POP BX

POP AX

RET

ENDP

END S

END

;COMPLETE TO 32 BIT +VE INTEGER

;GO TO RETURN

;MAKE KV A NEGATIVE INTEGER

;RESTORE THE REGISTERS

v

